Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Школа-конференция по теории точечных процессов
2 ноября 2022 г. 17:30–19:00, г. Суздаль
 


Determinantal point processes and Gaussian multiplicative chaos (Lecture 2)

А. И. Буфетов
Видеозаписи:
MP4 291.2 Mb

Количество просмотров:
Эта страница:166
Видеофайлы:21



Аннотация: To almost every realization of the sine-process one naturally assigns a random entire function, the analogue of the Euler product for the sine, the scaling limit of ratios of characteristic polynomials of a random matrix. The main result of the talk is that the square of the absolute value of our random entire function converges to the Gaussian multiplicative chaos. As a corollary, one obtains that almost every realization with one particle removed is a complete and minimal set for the Paley-Wiener space, whereas if two particles are removed, then the resulting set is a zero set for the Paley-Wiener space. Quasi-invariance of the sine-process under compactly supported diffeomorphisms of the line plays a key rôle.
In joint work with Qiu, the Patterson-Sullivan construction is used to interpolate Bergman functions from a realization of the determinantal point process with the Bergman kernel, in other words, by the Peres-Virág theorem, the zero set of a random series with independent complex Gaussian entries. The invariance of the zero set under the isometries of the Lobachevsky plane plays a key rôle. Conditional measures of the determinantal point process with the Bergman kernel are found explicitly (cf. arXiv:2112.15557, Dec. 2021).
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024