Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя школа «Современная математика», 2011
24 июля 2011 г. 17:00, г. Дубна
 


Предтеория инстантонов. Лекция 1

Н. А. Тюрин
Видеозаписи:
Flash Video 352.5 Mb
Flash Video 1,800.1 Mb
MP4 685.0 Mb

Количество просмотров:
Эта страница:2048
Видеофайлы:782

Н. А. Тюрин



Аннотация: Есть такое правило — чем короче название статьи, тем длиннее аннотация.
Однако это правило очень грубое: если назвать этот миникурс просто «Инстантоны», то тогда не придется объяснять что такое предтеория. Но последний термин и так понятен: теория и история — две стороны одной медали, и если есть предыстория, то нетрудно догадаться, что такое предтеория. Это небольшое введение в большую и важную теорию.
Тем более, что сам термин «инстантон» достаточно широк (или многолик, как и его собрат — солитон). Если «погуглить его» (или «погуглить по нему»?), то результат будет совсем не тот, который будет нужен нам, — в первую очередь вы получите неоконченную статью из Википедии, из которой будет совершенно непонятно, почему речь у нас пойдет о компактных четырехмерных римановых многообразиях, а не о пространстве–времени Минковского, в котором только и возможны такие штуки, как мнемонизация времени, поворот Вика и т.п. Мы будем рассматривать другую, на первый взгляд не физическую, а математическую ситуацию: гладкое четырехмерное риманово многообразие $X$, снабженное римановой метрикой $g$, векторное расслоение $E$ над $X$ со структурной группой $\mathrm{SU}(2)$, эрмитовы связности на этом расслоении и их кривизны. Нашей главной задачей будет ознакомиться (пусть и поверхностно) со словарем предмета, который называется «Калибровочные теории», построить функционал Янга-Миллса на пространстве эрмитовых связностей на расслоении $E$ в присутствии метрики $g$ и определить его минимумы. Эти минимумы мы назовем инстантонами. Таким образом, инстантон для нас — это эрмитова связность на расслоении, обладающая некоторым свойством минимальности.
На первом занятии мы сначала кратко напомним что такое гладкое многообразие и риманова метрика на нём (причем нам для работы не надо будет вводить ни связности Леви-Чивита, ни кривизны). Далее, мы построим пространство форм, из которых соорудим комплекс де Рама. Воспользовавшись метрикой, построим оператор Ходжа и разложение Ходжа. Поскольку оператор Ходжа действует как инволюция на пространстве 2-форм, то возникает понятие автодуальности и антиавтодуальности. В качестве приложения мы покажем как теория гармонических форм Ходжа связана с уравнением Максвелла.
На втором занятии будут определены понятия связности и кривизны (потенциала и поля на языке физики) на векторных расслоениях. Перед этим, естественно, мы кратко напомним что такое расслоение. Мы обсудим основные свойства связностей и кривизн, введём действие калибровочной группы и представим простейшие примеры калибровочно инвариантных уравнений. Калибровочно инвариантные уравнения — не зависят от выбора калибровки, в каком-то смысле «от выбора координат», поэтому они играют роль законов природы и очень важны в физике.
На третьем занятии мы введём функционал Янга-Миллса и покажем его калибровочную инвариантность. Нетрудно показать, что его минимумы есть в точности решения уравнения антиавтодуальности (это легко следует из теории Ходжа). Если останется время и силы мы обсудим главный пример — случай, когда $X$ — кэлерово многообразие, метрика $g$ — кэлерова, и инстантон тогда соответствует структуре стабильного голоморфного расслоения на $E$.
Всё это мы, конечно, обсудим очень поверхностно, «чисто феноменологически», но как и всякая «пред...» — предваряет, то и мой рассказ будет трейлером к большому курсу, который я собираюсь прочесть на математическом факультете ВШЭ в грядущем учебном году.
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024