Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Петербургский семинар по теории представлений и динамическим системам
19 октября 2022 г. 16:00, г. Санкт-Петербург, ПОМИ (наб. р. Фонтанки, 27), ауд. 311 + трансляция в zoom, см. http://www.pdmi.ras.ru/~rtheory/nextsem.html
 


The Gaussian multiplicative chaos for the sine-process

A. I. Bufetov

Количество просмотров:
Эта страница:225

Аннотация: To almost every realization of the sine-process one naturally assigns a random entire function, the analogue of the Euler product for the sine, the scaling limit of ratios of characteristic polynomials of a random matrix. The main result of the talk is that the square of the absolute value of our random entire function converges to the Gaussian multiplicative chaos. As a corollary, one obtains that almost every realization with one particle removed is a complete and minimal set for the Paley-Wiener space, whereas if two particles are removed, then the resulting set is a zero set for the Paley-Wiener space. Quasi-invariance of the sine-process under compactly supported diffeomorphisms of the line plays a key role.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024