Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Дни анализа в Сириусе
27 октября 2022 г. 11:00–12:00, Сочи
 


Volume Conjecture and WKB Asymptotics

A. I. Aptekarev

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow

Количество просмотров:
Эта страница:117

Аннотация: We consider q-difference equations for colored Jones polynomials. These polynomials are invariants for the knots and their asymptotics plays an important role in the famous Volume Conjecture (VC) for the complement of the knot to the 3-d sphere. We study WKB asymptotic behavior of the $n$-th colored Jones polynomial at the point exp {$ {2\pi i/N}$} when $n$ and $N$ tends to infinity and limit of $n/N$ belongs to [0, 1]. We state a Theorem on asymptotic expansion of \underline{general solutions} of the q-difference equations. For the \underline{partial solutions}, corresponding to the colored Jones polynomials, using some heuristic and numeric consideration, we suggest a conjecture on their WKB asymptotics. For the special knots under consideration, this conjecture is in accordance with the VC.
This is a joint work with Dmitrii Toulyakov and Tatyana Dudnikova. The work was done in Moscow Center of Fundamental and Applied Mathematics (agreement with Ministry of Science and Higher Education RF № 075-15-2022-283).
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024