Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Seminar on Analysis, Differential Equations and Mathematical Physics
13 октября 2022 г. 18:00–19:00, г. Ростов-на-Дону, online
 


Distance between two subsets of a unit-volume convex body

A. Ya. Kanel-Belov

Bar-Ilan University, Department of Mathematics

Аннотация: In multidimensional spaces we observe a variety of different phenomenas. Some of them might seem strange, for example, the volume of an $n$-dimensional ball of radius 2022 goes to 0 as $n$ tends to $\infty$. Even though two points in the $n$-dimensional unit cube could be at a distance of $\sqrt{n}$, two subsets of volume $\varepsilon$ could not be too far from each other – the distance between them is bounded above by $C\cdot\sqrt{|\ln(\varepsilon)}|$ for some constant $C$ independent of $\varepsilon$ and $n$. For standard simplexes and hyperoctahedrons(multidimensional octahedrons) we should replace $C\cdot\sqrt{|\ln(\varepsilon)}|$ with $C\cdot|\ln(\varepsilon)|$.
In our approach the key role is played by the isoperimetric problem: what is the minimal surface area that a body of a certain volume could have? (This problem could be considered in various different settings, for example, in the space $\mathbb{R}^n$, on the surface a sphere, in the space $\mathbb{R}^n$ with gaussian measure, or in a cube $(0; 1)^n$.)

Website: https://msrn.tilda.ws/sl
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025