Аннотация:
В конце позапрошлого века Гурвиц заинтересовался формулами вида
$$
(x_1^2+\dots+x_r^2)(y_1^2+\dots+y_s^2)=z_1^2+\dots+z_n^2,
$$
в которых $z_1,\dots,z_n$ билинейные функции от $x_i$ и $y_j$. Такие формулы называются формулами Гурвица.
До сих пор открыта поставленная Гурвицем в 1898 году задача: описать все тройки $(r;s;n)$, при которых существует формула Гурвица с $r$ иксами, $s$ игреками и $n$ зетами.
Примеры формул Гурвица можно получить, перемножая комплексные числа, кватернионы или октавы. Более общий класс примеров связан с представлениями алгебр Клиффорда.
Формулы Гурвица связаны с геометрией. Например, они определяют замечательный класс квадратичных отображений из проективных пространств в сферы (отображения Хопфа), которые переводят все прямые в окружности. Задача описания отображений, переводящих прямые в окружности, интересна сама по себе. Она связана с задачами номографии и с подходами к геометризации многообразий. Общие результаты в этой задаче получены только в размерностях, не превосходящих $4$.
Мы обсудим геометрические объекты, связанные с формулами Гурвица. Возникнет много открытых задач с элементарными формулировками. Мы не будем пользоваться ничем, кроме линейной алгебры. Необходимые понятия и результаты из линейной алгебры можно будет, при необходимости, кратко повторить.