Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Complex Analysis and Related Topics (satelllite of ICM-2022)
1 июля 2022 г. 17:00–17:20, Секция C. Функциональный анализ и квантовая теория информации, г. Казань, Казанский (Приволжский) федеральный университет
 


Limit distribution for compositions of random operators

V. Zh. Sakbaev, E. V. Shmidt

Количество просмотров:
Эта страница:108

Аннотация: Limit theorems for compositions of independent linear operators acting in a finite dimensional Euclidean space $E$ are studied. An example of application of the limit theorems to construction of equations corresponding to random independent affine transformations of a Euclidean space is explored.
It is known (see [1]) that the limit properties of distribution of the sum of random variables with values in the topological vector spaces can be described by limit theorems. In particular, the law of large numbers describes the convergence in probability of the sequence of averaged sum of independent identically distributed (iid) random vector valued variables to the limit of the mean value of the sum. The central limit theorem gives the conditions of the convergence in distribution for the sequence of averaged sum of iid random vector valued variables to the Gaussian random vector.
We study the sequence of compositions of iid random variables with values in the Banach algebra of bounded linear operators $B(H)$ acting in the separable Hilbert space $H$. In the commutative case of operators of an argument shift on a random vector the limit distribution of averaged composition can be described by the limit theorems for the sum of vector valued variables. Some results on the LLN and CLT for the averaged composition of independent random matrices or linear operators was obtained in [2, 3, 4]. We obtain the analogs of LLN and CLT for the sequence of compositions of iid random semigroups or $B(H)$-valued random processes with non-commutative values.

Язык доклада: английский

Список литературы
  1. Skorokhod A. V., “Products of independent random operators”, Russian Math. Surveys, 38:4 (1983), 291–318
  2. Orlov Yu. N., Sakbaev V. Zh., Smolyanov O. G., “Feynman Formulas and the Law of Large Numbers for Random One-Parameter Semigroups”, Proc. Steklov Inst. Math., 306 (2019), 196–211
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024