Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






9-я международная летняя школа-конференция по геометрическим методам математической физики
7 июля 2022 г. 09:30–10:30, Москва, Пансионат МГУ "Красновидово"
 


Конструктивные геометрические асимптотики и операторные подходы в задачах математической физики - 3

С. Ю. Доброхотов
Видеозаписи:
MP4 1,302.7 Mb
MP4 2,149.3 Mb

Количество просмотров:
Эта страница:199
Видеофайлы:24

С. Ю. Доброхотов
Фотогалерея



Аннотация: Лекции посвящены аналитическим методам построения эффективных асимптотик быстроменяющихся решений широкого круга дифференциальных и псевдодифференнциальных уравнений. В основе методов лежат геометрические объекты — лагранжевы многообразия в фазовых пространствах, сотканные из траекторий классических гамильтоновых систем. Знание таких многообразий и последующее применение канонического оператора Маслова позволяет построить асимптотические решения различных дифференциальных и псевдодифференциальных уравнений, возникающих в различных областях квантовой механики, механики сплошных сред, теории ортогональных полиномов и т.д. Обсуждаемые асимптотики находятся в рамках квазиклассического приближения и основополагающие идеи их построения были предложены более 50 лет назад.
В лекциях речь пойдет о недавно построенных существенных модификациях указанных асимптотических конструкций, позволивших, с одной стороны, выражать ответ в эффективной форме, например, через специальные функции и реализуемый с помощью программ типа Mathematica, а, с другой, — существенно расширить область рассматриваемого круга задач, допустив, например, негладкость возникающих лагранжевых многообразий. Также внимание будет уделено некоторым полезным соображениям, вытекающим из операторного исчисления Фейнмана–Маслова. Общие конструкции будут проиллюстрированы примерами из теории ортогональных полиномов, квантовой механики (физики графена, в частности), теории волновых пучков, гидродинамики. Каких-либо особых математических знаний не предполагается.
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024