Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция "Advances in Algebra and Applications"
26 июня 2022 г. 14:30–15:20, г. Минск, Zoom
 


A survey on the (2,3)-generation problem and related topics

M. A. Vsemirnov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Видеозаписи:
MP4 203.3 Mb

Количество просмотров:
Эта страница:174
Видеофайлы:35



Аннотация: A $(2,3)$-generated group is a group that can be generated by an involution and an element of order 3. These groups together with the trivial one and two cyclic groups of orders 2 and 3 are exactly the quotients of the modular group ${\rm PSL}(2,{\mathbb Z})$.
During past decades there was a considerable progress in determining which finite simple groups are (2,3)-generated. Using probabilistic methods Liebeck and Shalev showed that almost all finite classical groups of large rank are (2,3)-generated. However, the full list of exceptions is still unknown. Another (constructive) approach was developed by many authors. Recently Pellegrini filled the last gaps for the series ${\rm PLS(n,q)}$ and Tamburini and Pellegrini completed the unitary and symplectic cases.
Hurwitz groups (or finite (2,3,7)-generated groups) form an important subclass of the (2,3)-generated groups. In general, the situation is quite similar, i.e., most of the finite simple groups of large rank are Hurwitz, but for small ranks we know less.
In my talk I will survey main results, open questions and methods used in this area.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024