Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция "Advances in Algebra and Applications"
23 июня 2022 г. 11:20–12:10, г. Минск, Zoom
 


Non-stable $K_1$-functors and $R$-equivalence

A. Stavrova

Saint Petersburg State University
Видеозаписи:
MP4 166.5 Mb
Дополнительные материалы:
Adobe PDF 1.4 Mb

Количество просмотров:
Эта страница:148
Видеофайлы:38
Материалы:19



Аннотация: Let $A$ be a commutative ring. The elementary subgroup $E_n(A)$ of $SL_n(A)$ is the subgroup generated by the elementary transvections $e+te_{ij}$, where $1\leqslant i,j\leqslant n$ are distinct and $t$ is any element of $A$. This notion generalizes to any reductive $A$-group scheme $G$ satisfying a suitable isotropy condition. Namely, one defines the elementary subgroup $E(A)$ of the group of $A$-points $G(A)$ as the subgroup generated by the $A$-points of unipotent radicals of parabolic subgroups of $G$. The functor $K_1^G(-)=G(-)/E(-)$ on the category of commutative $A$-algebras is called the non-stable $K_1$-functor associated to $G$. If $A=k$ is a field and $G$ is semisimple, $E(k)$ is nothing but the group $G(k)^+$ introduced by J. Tits; in this case $K_1^G(k)=W(k,G)$ is also called the Whitehead group of $G$, and its computation is the subject of the Kneser–Tits problem. In this context, it has been known for some time that if $G$ is simply connected, then $K_1^G(k)$ coincides with the $R$-equivalence class group $G(k)/R$ in the sense of Yu. Manin. We generalize this identification to reductive groups over rings other than fields and apply it to the study of birational properties of $K_1^G$ and $G(-)/R$. The talk is based on a joint work with P. Gille.

Дополнительные материалы: Stavrova.pdf (1.4 Mb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024