Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Комплексные аппроксимации, ортогональные многочлены и приложения
23 июня 2022 г. 11:30–12:15, г. Сочи, Математический центр «Сириус»
 


Аппроксимации Чебышёва–Паде и полиномы Эрмита–Паде

С. П. Суетин

Математический институт им. В.А. Стеклова Российской академии наук, г. Москва

Количество просмотров:
Эта страница:156

Аннотация: Оюсуждается связь между линейными аппроксимациями Чебышёва– Паде аналитической функции $f$ и диагональными полиномами Эрмита– Паде 1-го типа для набора функций $ [1,f_1,f_2]$, где пара функций $f_1,f_2$ образует систему Никишина. Предложен подход, связанный с обобщением теории Шталя для аппроксимации Паде для многозначных аналитических функций на аппроксиации Чебышёва–Паде. Подход основан на связи между аппроксиациями Чебышёва–Паде и полиномами Эрмита–Паде, а также на связи полиномов Эрмита–Паде и многоточечных аппроксимаций Паде.
Это совместное исследование с Е.А. Рахмановым.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024