Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция «Квантовая интегрируемость и геометрия», посвященная 60-летиям Н. А. Славнова и Л. О. Чехова
3 июня 2022 г. 15:10–15:50, г. Москва, Zoom
 


Integrable deformations in the NxN matrices

G. F. Helminck

Korteweg-de Vries Institute for Mathematics, University of Amsterdam
Видеозаписи:
MP4 151.0 Mb

Количество просмотров:
Эта страница:168
Видеофайлы:12



Аннотация: Inside the algebra $LT_{\mathbb{N}}(R)$ of $\mathbb{N} \times \mathbb{N}$-matrices with coefficients from a commutative algebra $R$ over $k=\mathbb{R}$ or $\mathbb{C}$, that possess only a finite number of nonzero diagonals above the central diagonal, we consider two deformations of commutative Lie subalgebras generated by the $n$-th power $S^{n}, n\geqslant 1,$ of the matrix $S$ of the shift operator and a maximal commutative subalgebra h of $gl_{n}(k)$, where the evolution equations of the deformed generators are determined by a set of Lax equations, each corresponding to a different decomposition of $LT_{\mathbb{N}}(R)$. This yields the h$[S^{n}]$-hierarchy and its strict version. Both sets of Lax equations are equivalent to a set of zero curvature equations. To these sets of zero curvature equations we associate two Cauchy problems and present sufficient conditions under which they can be solved. They hold in particular in the formal power series context. Next we introduce two $LT_{\mathbb{N}}(R)$-models, one for each hierarchy, a set of equations in each module and special vectors satisfying these equations from which the Lax equations of each hierarchy can be derived. We conclude by presenting a functional analytic context in which these special vectors can be constructed. Thus one obtains solutions of both hierarchies.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024