Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция «Квантовая интегрируемость и геометрия», посвященная 60-летиям Н. А. Славнова и Л. О. Чехова
2 июня 2022 г. 12:30–13:10, г. Москва, МИАН, конференц-зал (9 этаж) + Zoom
 


Skew characteristic polynomial of graphs and embedded graphs

S. K. Landoab

a National Research University "Higher School of Economics", Moscow
b Skolkovo Institute of Science and Technology
Видеозаписи:
MP4 754.3 Mb
MP4 1,179.1 Mb

С. К. Ландо
Фотогалерея



Аннотация: We introduce a new one-variable polynomial invariant of graphs, which we call the skew characteristic polynomial. For an oriented simple graph, this is just the characteristic polynomial of its anti-symmetric adjacency matrix. For nonoriented simple graphs the definition is different, but for a certain class of graphs (namely, for intersection graphs of chord diagrams), it gives the same answer if we endow such a graph with an orientation induced by the chord diagram.
We prove that this invariant satisfies Vassiliev's 4-term relations and determines therefore a finite type knot invariant. We investigate the behaviour of the polynomial with respect to the Hopf algebra structure on the space of graphs and show that it takes a constant value on any primitive element in this Hopf algebra. We also provide a two-variable extension of the skew characteristic polynomial to embedded graphs and delta-matroids. The 4-term relations for the extended polynomial prove that it determines a finite type invariant of multicomponent links.
The talk is based on a joint work with R.Dogra.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024