Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция «Квантовая интегрируемость и геометрия», посвященная 60-летиям Н. А. Славнова и Л. О. Чехова
2 июня 2022 г. 11:50–12:30, г. Москва, МИАН, конференц-зал (9 этаж) + Zoom
 


Symplectic duality for topological recursion

M. E. Kazarian

National Research University "Higher School of Economics", Moscow
Видеозаписи:
MP4 251.5 Mb
MP4 1,307.5 Mb

Количество просмотров:
Эта страница:236
Видеофайлы:41

М. Э. Казарян
Фотогалерея



Аннотация: Joint work with B. Bychkov, P. Dunun-Barkovski, and S. Shadrin, work in progress.
There are many enumerative problems whose answers are encoded in the Taylor coefficients of a sequence of the so-called m-point correlator functions. The topological recursion (due to Chekhov-Eunard-Orantin) is an inductive procedure for explicit computation of these functions in a closed form starting from a relative small amount of initial data. A small suspension of the problem leads to a collection of (m,n)-point correlator functions such that the original ones correspond to the case n=0. It proves out that the sequence of (0,n) functions also satisfies its own topological recursion with its own initial data. This fact was known before for the two-matrix model related to the problem of enumeration of (hyper)maps. The two recursions are related in this case by the x-y duality which is well studied in a general formalism of topological recursion. We generalize this fact to the case of enumeration of generalized Hurwitz numbers. The former x-y duality does not hold literally in this case; its analogue for the generalized Hurwitz numbers is exactly what we mean by the symplectic duality.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024