Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция «Квантовая интегрируемость и геометрия», посвященная 60-летиям Н. А. Славнова и Л. О. Чехова
1 июня 2022 г. 10:10–10:50, г. Москва, МИАН, конференц-зал (9 этаж) + Zoom
 


Quantum Novikov equations

V. M. Buchstaber

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Видеозаписи:
MP4 176.3 Mb

Количество просмотров:
Эта страница:291
Видеофайлы:41

В. М. Бухштабер
Фотогалерея



Аннотация: In the first part of the talk, we will discuss the well-known Korteweg-de Vries hierarchy in the free associative algebra of an infinite number of variables. For each natural number N, we give an explicit description of the noncommutative version of the N-th Novikov equation and its first integrals in a free associative algebra of 2N variables. In the second part of the talk, we will introduce the N-th quantum Novikov equations and describe their first integrals. Using the examples, we will show how work the general method of quantization ideals, recently introduced by A.V. Mikhailov. In our case, we are talking about a two-sided ideal in the free associative algebra of 2N variables, which is invariant under the noncommutative N-th Novikov equation in this algebra. A factor by such ideal defines a dynamical system in an associative algebra AN of 2N variables with the additive Poincare–Birkhoff–Witt basis. In the third part of the talk, we will introduce a polynomial invertible transformation of the algebra AN, which transforms the N-th quantum Novikov equation and the corresponding quantum hierarchy to the standard Heisenberg form. As result we will obtain the operator representation of explicitly given quantum Hamiltonians. The talk is based on the results obtained jointly with A.V. Mikhailov.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024