Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Seminar on Analysis, Differential Equations and Mathematical Physics
12 мая 2022 г. 18:00–19:00, г. Ростов-на-Дону, online, ссылка для подключения на странице семинара
 


Semiclassical Approximation with Compex Phases for Constructing Effective Plancherel-Rotach type asymptotics of 1-D and 2-D orthogonal polynomials

S. Yu. Dobrokhotov

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow

Количество просмотров:
Эта страница:169

Аннотация: Many orthogonal polynomials $u(n,z)$, ($n$ is the number of the polynomial, $z$ is its argument), for example, the Chebyshev, Hermite, Laguerre, Legendre, are determined by recurrent relations (or difference equations) of the second order. For large numbers of $n$, they are approximated by the exponent, trigonometric, or special functions of a complex argument. For example, Hermite polynomials are approximated by the Plancherel-Rotach formulas, in which the special function is the Airy function Ai, Legendre polynomials are approximated by the zero-order Bessel function, and so on. We discuss an approach [1] to finding asymptotics of this type that are uniform in the variable $z$, based on the transition from discrete equations to continuous pseudodifferential equations in the variable $x=nh$, for functions $w(x,z)$, ($u(k,z)=w(kh,z)$, where $h \sim O (1/n)$ is an artificial small parameter) and the subsequent application of the semiclassical approximation with complex phases to them. The developed approach is generalized for 2-D Hermitian type orthogonal polynomials $H(n_1,n_2,z,a)$ with two indices $n_1,n_2$. This part of the talk contains the results recently obtained together with A. I. Aptekarev and D. N. Tulyakov [2,3].
The work was supported by Government program №AAAAA20-120011690131-7.
The talk is based on joint work with Prof. Anna Tsvetkova.
Bibliography
[1] A. I. Aptekarev, S. Yu. Dobrokhotov, D. N. Tulyakov, A. V. Tsvetkova, Plancherel-Rotach type asymptotics for multiple orthogonal Hermite polynomials and recurrence relations, Izvestiya: Mathematics 86:1, 32-91.
[2] S. Yu. Dobrokhotov and A. V. Tsvetkova, An Approach to Finding the Asymptotics of Polynomials Given by Recurrence Relations, Russian Journal of Mathematical Physics, Vol. 28, No. 2, 2021, pp. 198-223.
[3] S. Yu. Dobrokhotov and A. V. Tsvetkova, Asymptotics of multiple orthogonal Hermite polynomials $H(n_1,n_2,z,\alpha)$ determined by a third-order differential equation, Russian Journal of Mathematical Physics, Vol. 28, No. 4, 2021, pp. 439-454.

Website: https://msrn.tilda.ws/sl
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024