Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Петербургский семинар по теории представлений и динамическим системам
15 июня 2011 г. 16:15, г. Санкт-Петербург, Санкт-Петербург, 14 линия В.О., дом 29Б, ауд. 14
 


Determinants and the formula "det(exp(y)) = exp(trace(y))", theme and variation

P. de la Harpe

University of Geneva

Количество просмотров:
Эта страница:187

Аннотация: One of the possible definitions of the determinant of a complex invertible matrix is the formula $\det(\exp(y))=\exp(\mathrm{trace}(y))$. This is the starting point of the determinant of Fuglede and Kadison (1952, in the setting of operator algebras), that we will revisit. We will explain how this can be adapted to other situations, and analyse why, depending on the setting, it provides a determinant which can be real-valued, or complex-valued, or indeed with other values. We will briefly discuss the relevance of this to K-theory and topology (torsion).
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024