Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Beijing–Moscow Mathematics Colloquium
29 апреля 2022 г. 11:00–12:00, г. Москва, online
 


Finiteness problem for hyper-Kahler varieties

Zhiyuan Li

Shanghai Center for Mathematical Sciences

Количество просмотров:
Эта страница:128

Аннотация: The classical Shafarevich conjecture is about the finiteness of isomorphism classes of curves of given genus defined over a number field with good reduction outside a finite collection of places. It plays an important role in Falting's proof of the Mordell conjecture. Similar finiteness problems arise for higher dimensional varieties. In this talk, I will talk about finiteness problems for hyper-Kahler varieties in arithmetic geometry. This includes the unpolarized Shafarevich conjecture for hyper-Kahler varieties the cohomological generalization of the Shafarevich conjecture by replacing the good reduction condition with the unramifiedness of the cohomology. I will also explain how to generalize Orr and Skorobogatov's finiteness result on K3 surfaces to hyper-Kahler varieties, i.e. the finiteness of geometric isomorphism classes of hyper-Kahler varieties of CM type in a given deformation type defined over a number field with bounded degree. This is a joint work with Lie Fu, Teppei Takamatsu and Haitao Zou.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024