|
|
Complex Approximations, Orthogonal Polynomials and Applications (CAOPA)
25 апреля 2022 г. 20:00–21:00, г. Москва, online via Zoom at 17:00 GMT (=13:00 EDT=18:00 BST=19:00 CEST=20:00 Msk)
|
|
|
|
|
|
Schrödinger operator with complex potential – absolutely continuous vs singular spectrum
R. V. Romanov Saint Petersburg State University
|
Количество просмотров: |
Эта страница: | 135 |
|
Аннотация:
The structure of the essential spectrum of the Schrödinger and Dirac operators on the semiaxis is studied. It is shown that the essential spectrum is purely singular if the imaginary part of the potential is sign-definite and not summable. We also discuss the dynamical implications of this assertion.
Язык доклада: английский
|
|