Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Графы на поверхностях и кривые над числовыми полями
20 апреля 2022 г. 18:30–20:00, г. Москва, on-line
 


Volumes of hyperbolic polytopes, cluster polylogarithms, and the Goncharov depth conjecture

D. G. Rudenko

University of Chicago

Количество просмотров:
Эта страница:117

Аннотация: Lobachevsky started to work on computing volumes of hyperbolic polytopes long before the first model of the hyperbolic space was found. He discovered an extraordinary formula for the volume of an orthoscheme via a special function called dilogarithm.
We will discuss a generalization of the formula of Lobachevsky to higher dimensions. For reasons I do not fully understand, a mild modification of this formula leads to the proof of a conjecture of Goncharov about the depth of multiple polylogarithms. Moreover, the same construction leads to a functional equation for polylogarithms generalizing known equations of Abel, Kummer, and Goncharov.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024