Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Петербургский геометрический семинар им. А. Д. Александрова
28 февраля 2022 г. 17:00–19:00, г. Санкт-Петербург, ПОМИ, наб. р. Фонтанки, 27, ауд. 203
 


Задача Банаха об изометричных подпространствах в размерности 4

С. В. Иванов

Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук

Количество просмотров:
Эта страница:174

Аннотация: Доклад посвящен следующей задаче, поставленной С.Банахом: Пусть V - нормированное пространство, 1<n<dim(V), и предположим, что все n-мерные линейные подпространства V изометричны друг другу. Верно ли, что норма пространства V обязательно евклидова?
Тот же вопрос на языке выпуклых множеств: Дано выпуклое симметричное тело B в пространстве V, и все его сечения n-мерными линейными подпространствами аффинно эквивалентны друг другу. Верно ли, что B - эллипсоид?
Вопрос решен (положительно) для некоторых, но не всех значений n и dim(V). Совместно с Д.Мамаевым и А.Нордсковой нам удалось решить задачу для n=3. Со времени предыдущего доклада на эту тему был доделан негладкий случай.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024