|
|
Семинар Добрушинской лаборатории Высшей школы современной математики МФТИ
24 мая 2011 г. 16:00, комн. 307 ИППИ РАН (Большой Каретный пер., 19), Москва
|
|
|
|
|
|
Локальный вид решений уравнения Шлезингера в окрестности особой точки
И. В. Вьюгин Институт проблем передачи информации им. А. А. Харкевича Российской академии наук, г. Москва
|
|
Аннотация:
Уравнение Шлезингера - это система нелинейных аналитических дифференциальных уравнений в частных производных специального вида: $dB_i=sum_{je i}[B_i,B_j]/(a_i-a_j)d(a_i-a_j)$ (где $B_i(a)$ — матрично-значные функции), к которой могут быть сведены многие известные нелинейные уравнения (например, 6-е уравнение Пенлеве). В докладе мы получим локальный вид решений уравнения Шлезингера в окрестности особой точки.
Важно отметить, что это уравнение дает условие того, что системы линейных дифференциальных уравнений из некоторого семейства обладают важным свойством: их решения одинаково изменяются при продолжении вокруг особой точки (т.е. они имеют одну монодромию). Эта интерпретация дает возможность упростить некоторые задачи. Так в ряде интересных примеров (уравнения Шлезингера, Пенлеве 6 и уравнения Пенлеве 3 и 5 при $t=0$) можно показать, что их решения представляются виде сходящихся степенных рядов с комплексными степенями и степенных рядов с логарифмами.
|
|