|
|
Seminar on Analysis, Differential Equations and Mathematical Physics
17 марта 2022 г. 18:00–19:00, г. Ростов-на-Дону, online, ссылка для подключения на странице семинара
|
|
|
|
|
|
Characteristic Lie algebra of Klein-Gordon equation and higher symmetries
D. V. Millionshchikovab a Gubkin Moscow Institute Oil and Gas
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
|
Количество просмотров: |
Эта страница: | 157 |
|
Аннотация:
Consider Klein-Gordon equation written in the form $u_{xy}=f(u)$.
We define characteristic Lie algebra $\chi(f)$ as a Lie subalgebra in the Lie algebra of differential operators generated by two operators
$$
X_0=\frac{\partial}{\partial u}, X_f= f\frac{\partial}{\partial u_1}+D(f)\frac{\partial}{\partial u_2}+\dots+D^{n-1}(f)\frac{\partial}{\partial u_n}+\dots,
$$
where $D=u_1\frac{\partial}{\partial u}+u_2\frac{\partial}{\partial u_1}+\dots+u_{n+1}\frac{\partial}{\partial u_n}+\dots$
The properties of the characteristic Lie algebra $\chi(f)$ are related to the integrability of Klein-Gordon equation. We are going to discuss characteristic Lie algebras of two integrable cases: sine-Gordon $f(u)=\sinh{h}$ equation and Tzitzeica $f(u)=e^u+e^{2u}$ equation.
Язык доклада: английский
Website:
https://msrn.tilda.ws/sl
|
|