Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар лаборатории алгебраических групп преобразований НИУ ВШЭ
19 января 2022 г. 18:00–19:30, г. Москва, https://youtu.be/hpjBLz-af-Q
 


Polytopal linear groups

А. А. Шафаревич

Национальный исследовательский университет "Высшая школа экономики", г. Москва

Количество просмотров:
Эта страница:268
Youtube:



Аннотация: Let $P \subseteq \mathbb{R}^n$ be a lattice polytope; i.e., $P$ is a convex hull of a finite subset of $\mathbb{Z}^n \subseteq \mathbb{R}^n$. Consider the subsemigroup $S_P$ in $\mathbb{Z}^{n+1}$ generated by the set $\{(x; 1) \mid x \in P \cap \mathbb{Z}^n\}$. The polytopal algebra associated with $P$ is the semigroup algebra $k[S_P]$ where $k$ is a field. The algebra $k[S_P]$ is naturally graded by the group $\mathbb{Z}$. Following the work of Winfried Bruns and Joseph Gubeladze we will give a description of the group of graded automorphisms of $k[S_P]$.

References:
[1] Winfried Bruns and Joseph Gubeladze. Polytopal linear groups. Journal of Algebra 218, 715-737 (1999)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024