Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная Российско-Японская конференция “Categorical and Analytic Invariants in Algebraic Geometry VIII”
27 декабря 2021 г. 15:15–16:15, г. Москва, МИАН, комната 104
 


On the motivic Adams conjecture

A. S. Ananyevskiy
Видеозаписи:
MP4 3,893.3 Mb

Количество просмотров:
Эта страница:287
Видеофайлы:53



Аннотация: In the motivic homotopy theory one associates to a scheme X the socalled motivic stable homotopy category SH(X) that is a tensor triangulated category and is a universal source of cohomological invariants that are A^1-invariant and satisfy descent in the Nisnevich topology. Motivic Adams conjecture provides a partial information on the Picard group of SH(X). Every vector bundle over X gives rise to an element in the Picard group of SH(X) via the Thom spectrum construction and this yields a homomorphism from the Grothendieck group of vector bundles over X to the Picard group of SH(X). Motivic Adams conjecture claims that the difference between the Thom space of a vector bundle and the Thom space of the value of the k-th Adams operation on the vector bundle in Pic(SH(X)) is k-torsion. In my talk I will introduce all this notions and give an outline of the proof for this conjecture. The talk is based on the work in progress joint with Elden Elmanto, Oliver Roendigs and Maria Yakerson.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024