Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция "Algebraic Topology and Applications"
20 декабря 2021 г. 11:00–11:50, г. Москва, онлайн
 


Cohomological rigidity of manifolds associated to ideal right-angled hyperbolic 3-polytopes

Н. Ю. Ероховец

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
Видеозаписи:
MP4 499.2 Mb

Количество просмотров:
Эта страница:136
Видеофайлы:27



Аннотация: Toric topology assigns to each $n$-dimensional combinatorial simple convex polytope $P$ with $m$ facets an $(m+n)$-dimensional moment-angle manifold $\mathcal{Z}_P$ with an action of a compact torus $T^m$ such that $\mathcal{Z}_P/T^m$ is a convex polytope of combinatorial type $P$.
Definition 1. A simple $n$-polytope is called $B$-rigid, if any isomorphism of graded rings $H^*(\mathcal{Z}_P,\mathbb Z)= H^*(\mathcal{Z}_Q,\mathbb Z)$ for a simple $n$-polytope $Q$ implies that $P$ and $Q$ are combinatorially equivalent.
An ideal almost Pogorelov polytope is a combinatorial $3$-polytope obtained by cutting off all the ideal vertices of an ideal right-angled $3$-polytope in the Lobachevsky (hyperbolic) space $\mathbb L^3$. These polytopes are exactly the polytopes obtained from any, not necessarily simple, convex $3$-polytopes by cutting off all the vertices followed by cutting off all the “old”  edges. The boundary of the dual polytope is the barycentric subdivision of the boundary of the old polytope (and also of its dual polytope).
Theorem. Any ideal almost Pogorelov polytope is $B$-rigid.
Definition 2. A family of manifolds is called cohomologically rigid over the ring $R$, if for any two manifolds $M$ and $N$ from the family any isomorphism of graded rings $H^*(M,R)\simeq H^*(N,R)$ implies that $M$ and $N$ are diffeomorphic.
Any ideal almost Pogorelov polytope $P$ has a canonical colouring of facets in $3$ colours corresponding to vertices, edges and facets of the polytope that gives $P$ via cutting off vertices and “old”  edges. This colouring produces the $6$-dimensional quasitoric manifold $M(P)$ and the $3$-dimensional small cover $N(P)$, which are known as “pullbacks from the linear model”.
Corollary. The families $\{\mathcal{Z}_P\}$, $\{M(P)\}$, and $\{N(P)\}$ indexed by the ideal right-angled hyperpolic $3$-polytopes are cohomologically rigid over $\mathbb Z$, $\mathbb Z$ and $\mathbb Z_2$ respectively.
We also plan to discuss the geometry of the $3$-manifolds $N(P)$.
[E20] N. Erokhovets,  $B$-rigidity of ideal almost Pogorelov polytopes, arXiv:2005.07665v3.
[E21] Nikolai Yu. Erokhovets,  $B$-rigidity of the property to be an almost Pogorelov polytope, Contemporary Mathematics, 772, 2021, 107–122.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024