Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Узлы и теория представлений
20 декабря 2021 г. 18:30, г. Москва, Join Zoom Meeting ID: 818 6674 5751 Passcode: 141592
 


Classification & applications of the algebraic concordance of almost classical knots

M. W. Chrisman

Количество просмотров:
Эта страница:105

Аннотация: As is well known, J. Levine classified the algebraic concordance group $\mathscr{G}^{\mathbb{F}}$ of knots in the $3$-sphere, where $\mathbb{F}$ is a field of characteristic 0. In this talk, we will define two generalizations of the algebraic concordance group for homologically trivial knots in thickened surfaces $\Sigma \times [0,1]$, where $\Sigma$ is closed and oriented. The generalizations are called the coupled algebraic concordance group and the uncoupled algebraic concordance group. These can be realized as concordance classes of Seifert surfaces. For the uncoupled algebraic concordance group $\mathscr{VG}^{\mathbb{F}}$, we prove that $\mathscr{VG}^{\mathbb{F}} \cong \mathscr{I}(\mathbb{F})\oplus \mathscr{G}^{\mathbb{F}}$, where $\mathscr{F}$ is the fundamental ideal of the Witt ring over $\mathbb{F}$. For $\mathbb{F}=\mathbb{Z}/2\mathbb{Z}$, we also define an Arf invariant. Examples will be given in the several cases, with applications to virtual knots.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024