Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция "Conference in honour of Alexey Bondal's 60th birthday"
17 декабря 2021 г. 12:15–13:15, г. Москва, Zoom
 


Weakly localising subcategories of coherent sheaves and isomorphisms in codimension two

A. Bodzenta

University of Warsaw
Видеозаписи:
MP4 1,530.6 Mb

Количество просмотров:
Эта страница:198
Видеофайлы:61



Аннотация: I will consider a weakly localising Serre subcategory $B$ in an abelian category $A$, i.e. a Serre subcategory such that the quotient $A/B$ admits a torsion pair with the torsion-free part equivalent to the category $E$ of $B$-closed objects. I will give sufficient conditions for $B$ to be weakly localising in terms of torsion-tilting chains in $A$. I will also argue that $T$-consistent pairs of t-structures of amplitude 2 are equivalent to (strongly) torsion-tilting chains. Given a scheme $X$ of dimension $n$, the derived category $\mathrm{D}(X)$ admits a $T$-consistent pair of t-structures of amplitude $n$ which yields a pair of amplitude 2. As a result, the category $\mathrm{Coh}_2(X)$ of sheaves supported in codimension 2 is weakly localising. I will prove that, under additional assumptions on $X$, the additive category $E_2(X)$ of locally $\mathrm{Coh}_2(X)$-closed objects allows us to reconstruct $X$ up to an isomorphism outside of codimension 2. For a normal surface $X$ I will construct its final model $X'$ from the additive category $E_2(X)$. I will argue that $X$ admits an open embedding into $X'$ with complement of codimension two and I will give conditions under which $X$ is isomorphic to $X'$. This is based on a joint work with A. Bondal.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024