Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Дифференциальная геометрия и приложения
22 ноября 2021 г. 16:45–18:20, г. Москва, ГЗ МГУ, ауд. 16-10
 


Квантование свободных ассоциативных динамических систем. Би–квантование стационарной иерархии КдФ и уравнений Новикова и недеформационное квантование уравнений иерархии Вольтерра

А. В. Михайлов

Количество просмотров:
Эта страница:173

Аннотация: Традиционные теории квантования начинаются с классических гамильтоновых систем с переменными, принимающими значения в коммутативной алгебре, а затем изучают их некоммутативные деформации, такие, что коммутаторы наблюдаемых стремятся к соответствующим скобкам Пуассона, когда деформационная постоянная (постоянная Планка) стремится к нулю. Я предлагаю начинать с динамических систем, определенных на свободной ассоциативной алгебре $A$. В этом подходе задача квантования сводится к описанию двусторонних идеалов $J\subset A$, удовлетворяющих двум условиям: идеалы должны быть инвариантными. относительно динамики системы и определить полный набор коммутационных соотношений в факторе алгебры $A_J=A\diagup J$.
Чтобы проиллюстрировать этот подход, я рассмотрю задачу квантования для $N$–го уравнения Новикова и соответствующих конечная иерархия КдФ. Я покажу, что стационарные уравнения КдФ и уравнения Новикова допускают два совместимых квантования, то есть два различных коммутационных отношения между переменными, так что линейная комбинация соответствующие коммутаторы также являются действующим правилом квантования, приводящим к форме квантовых уравнений Гейзенберга. Картина очень похожа на би–гамильтонову структуру в случае классических интегрируемых уравнений.
Я также собираюсь обсудить квантование семейства интегрируемых $N$–цепочек Богоявленского:
\begin{equation}\label{bog} \frac{du_n}{dt}=\sum_{k=1}^N (u_{n+k}\,u_n-u_n\,u_{n-k}),\qquad n\in\mathbb Z, \end{equation}
квантование их симметрий и модификаций. В частности, я покажу, что симметрии нечетной степени Цепочка Вольтерра ($N=1$ in \eqref{bog}) допускает два квантования, одно из которых соответствует известному квантованию цепочки Вольтерра, а второе квантование является недеформационным и ранее неизвестным.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024