Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Complex Approximations, Orthogonal Polynomials and Applications (CAOPA)
15 ноября 2021 г. 20:00–21:00, г. Москва, online via Zoom at 17:00 GMT (=12:00 EST=18:00 CET=20:00 Msk)
 


Positive definite periodic functions and polynomials orthogonal on the unit circle with dense point spectrum

A. S. Zhedanovab

a Renmin University of China
b Université de Montréal, Centre de Recherches Mathématiques



Аннотация: We demonstrate that any positive definite periodic function $f(x)$ generates a set of polynomials orthogonal on the unit circle (OPUC) with dense point spectrum. Explicit examples of OPUC arise if $f(x)$ coincides with one of two Jacobi elliptic functions: $\textrm{cn}(x;k)$ or $\textrm{dn}(x,k)$. These OPUC have a simple explicit expression in terms of elliptic hypergeometric functions. A more elementary example corresponds to wrapped geometric distribution on the unit circle . In this case OPUC are expressed in terms of a basic hypergeometric function. In all the above cases corresponding OPUC satisfy remarkable “classical” properties.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024