Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар по аналитической механике и теории устойчивости имени академика В.В. Румянцева
17 ноября 2021 г. 17:00, г. Москва, Механико-математический факультет, МГУ имени М.В. Ломоносова
 


Механика голономных систем с геометрическими особыми точками

С. Н. Бурьян

Санкт-Петербургский государственный университет, математико-механический факультет
Видеозаписи:
MP4 225.9 Mb

Количество просмотров:
Эта страница:170
Видеофайлы:17



Аннотация: В классической механике рассматриваются конфигурационные пространства механических систем, которые являются гладкими многообразиями. Уравнения движения являются гладкими векторными полями на (ко)касательном расслоении многообразия. Для случая, когда конфигурационное или фазовое пространство механической системы содержит особые точки, предлагаются, как правило, частные приёмы. Обобщения этих методов до общей теории ещё далеки до завершения. Мы рассмотрим несколько теорий геометрии сингулярных пространств, в которых обобщаются основные понятия дифференциального исчисления: (ко)касательный вектор, (ко)касательное пространство и векторное поле, интегральные кривые векторного поля и т.д. Для анализа применимости этих теорий к задачам аналитической механики рассматриваются конкретные примеры механических систем с особенностями. Описанная кинематика и динамика этих механизмов в рамках исследуемых теории сравнивается с наблюдаемой динамикой для моделей механизмов. Это позволяют сформулировать ряд условий, которым обобщенная теория должна удовлетворять. Дополнительно изучены силы реакции при некоторых возмущений голономных связей вблизи особенности.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024