Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар по аналитической механике и теории устойчивости имени академика В.В. Румянцева
3 ноября 2021 г. 17:00, г. Москва, Механико-математический факультет, МГУ имени М.В. Ломоносова
 


Брахистохрона и двумерная задача Годдарда

Е. В. Малых, Н. В. Смирнова, О. Ю. Черкасов

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
Видеозаписи:
MP4 140.7 Mb

Количество просмотров:
Эта страница:224
Видеофайлы:49



Аннотация: Рассматривается движение материальной точки в вертикальной плоскости в однородном поле тяжести и в однородной, сопротивляющейся среде. В качестве управляющих переменных рассматриваются угол траектории и тяга. Целью управления является максимизация горизонтальной дальности за заданное время. Количество топлива задано. Наряду с задачей максимизации дальности рассматривается модифицированная задача о брахистохроне, сформулированная следующим образом: найти кривую, соединяющую две точки в вертикальной плоскости, вдоль которой материальная точка в поле силы тяжести и неконсервативной силы перемещается из начальной в конечную точку за кратчайшее время.
В [1] была исследована оптимального программирования тяги в задаче максимизации дальности при заранее определенных законах изменения угла наклона траектории. В [2] рассмотрена задача о брахистохроне, в которой управлением являлся угол наклона траектории, при заранее заданных законах изменения массы точки. Настоящее исследование дополняет работы [1,2], поскольку управлениями являются и угол наклона траектории, и сила тяги.
Результаты: для определенной области в пространстве переменных построен синтез оптимального управления тягой и углом наклона траектории. Структура оптимальной тяги качественно совпадает с классическим решением задачи Годдарда: максимальная-промежуточная-нулевая или нулевая-промежуточная-нулевая.

Литература:
1. Nahshon Indig, Joseph Ben Asher. Singular Control for Two-Dimensional Goddard Problems Under Vari-ous Trajectory Bending Laws, Journal of Guidance, Control, and Dynamics, 2018, 42(2):1-15. DOI: 10.2514/1.G003670.
2. O. Jeremic, S. Salinic, A. Obradovic, Z. Mitrovic. On the brachistochrone of a variable mass particle in gen-eral force fields, Mathematical and Computer Modelling, 2011, V. 54, pp. 2900–2912.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024