Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар им. В. А. Исковских
11 ноября 2021 г. 18:00–19:30, г. Москва, online
 


A smooth complex rational affine surface with uncountably many nonisomorphic real forms

A. Bot
Видеозаписи:
MP4 360.1 Mb

Количество просмотров:
Эта страница:259
Видеофайлы:31



Аннотация: A real form of a complex algebraic variety $X$ is a real algebraic variety whose complexification is isomorphic to $X$. Up until recently, it was known that many families of complex varieties have a finite number of nonisomorphic real forms. In 2019, Lesieutre constructed an example of a projective variety of dimension six with infinitely many, and now, Dinh, Oguiso and Yu found a projective rational surface with infinitely many as well. In this talk, I’ll present the first example of a rational affine surface having uncountably many nonisomorphic real forms. The first example with infinitely countably many real forms on an affine rational variety is due to Dubouloz, Freudenberg and Moser-Jauslin.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024