Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Complex Approximations, Orthogonal Polynomials and Applications (CAOPA)
20 сентября 2021 г. 19:00–20:00, г. Москва, online via Zoom at 16:00 GMT (=17:00 BST=18:00 CEST=19:00 Msk)
 


A semiclassical WKB problem for the non-self-adjoint Dirac operator with a decaying potential

N. Hatzizisis

University of Crete



Аннотация: In this talk, we shall be interested in the semiclassical behavior of the scattering data of a non-self-adjoint Dirac operator with a fairly smooth -but not necessarily analytic- potential decaying at infinity. In particular, using ideas and methods going back to Langer and Olver, we provide a rigorous semiclassical analysis of the scattering coefficients, the Bohr-Sommerfeld condition for the location of the eigenvalues and their corresponding norming constants. Our analysis is motivated by the potential applications to the focusing cubic NLS equation, in view of the well-known fact discovered by Zakharov and Shabat that the spectral analysis of the Dirac operator is the basis of the solution of the NLS equation via inverse scattering theory.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024