Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар им. П.К. Рашевского по тензорному и векторному анализу с приложениями к геометрии, механике и физике
28 марта 2011 г. 18:30, г. Москва, г. Москва, ГЗ МГУ, ауд. 16-08
 


Проблема модулей в теории представлений групп

А. Н. Паршин

Математический институт им. В.А. Стеклова Российской академии наук, г. Москва

Количество просмотров:
Эта страница:396

Аннотация: Проблема классификации геометрических объектов, таких как многообразия, векторные расслоения, подмногообразия или циклы, хорошо известна в алгебраической геометрии. Наличие конечного числа алгебраических параметров или «модулей» приводит к вопросу о построении соответствующего алгебраического многообразия таких параметров. Как ни странно, в теории представлений групп различных классов такая задача почти не ставилась, хотя отдельные результаты и идеи в этом направлении высказывались И. Р. Шафаревичем, И. М. Гельфандом и другими. Недавно докладчиком была построена теория необязательно унитарных представлений дискретных нильпотентных групп класса 2, т.е. дискретных групп Гейзенберга. В этой теории в качестве пространств модулей представлений появляются компактные алгебраические многообразия, являющиеся семействами абелевых многообразий — феномен ранее не встречавшийся в теории представлений. Мы дадим обзор этой новой теории и обсудим в связи с ней вопрос о пространстве модулей представлений для других классов групп.
Литература: A. N. Parshin, Representations of higher adelic groups and arithmetic, Proc. ICM Hyderabad, 2010 (arXiv: 1012.0486).
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024