|
|
Узлы и теория представлений
16 августа 2021 г. 18:30, г. Москва, Join Zoom Meeting ID: 818 6674 5751 Passcode: 141592
|
|
|
|
|
|
Внешние биллиарды вне правильных многоугольников: случай $n=7$
Ф. Д. Рухович Московский физико-технический институт (национальный исследовательский университет), Московская облаcть, г. Долгопрудный
|
Количество просмотров: |
Эта страница: | 134 |
|
Аннотация:
Рассмотрим многоугольник $\Gamma$. Из точки $p$ на плоскости проведем касательную (т.е. опорную прямую) к $M$ и отразим $p$ относительно точки касания. Такое преобразование называется преобразованием внешнего биллиарда. При последовательном применении такой операции, точка может оказаться периодической (т.е. вернуться в какой-то момент в себя), апериодической (никогда не вернуться в себя), а также вырожденной (внешний биллиард можно применить конечное число раз).
Особое место занимает случай, когда $\Gamma$ есть правильный $n$-угольник. В случаях $n=3,4,6$ ситуация проста (апериодических траекторий нет); также ситуация была исследована для случая $n=5$ и, частично, $n=10$ (апериодическая точка есть, но периодические точки образуют множество полной меры). Автором были получены результаты для случаев $n=8,12,10$. Р.Шварц, основываясь на компьютерных экспериментах, высказал предположение, что только для случаев $n=5,10,8,12$, по-видимому,
есть точное самоподобие, которое позволяет полностью описать периодические структуры и найти апериодические точки. Шварц проводил эксперименты для случая $n=7$, и самоподобие найти не удалось.
Тем не менее, более глубокий компьютерный анализ дал возможность установить, что в случае $n=7$ самоподобие все-таки существует. С его помощью, легко показать существование апериодической точки - однако полнота меры периодических точек остается под вопросом. В докладе пойдет речь о компьютерном доказательстве существования самоподобия и, как следствие, апериодической точки, а также о том, каковы могут быть дальнейшие шаги в изучении как случая $n=7$, так и других случаев.
|
|