|
|
Конференция международных математических центров мирового уровня
12 августа 2021 г. 17:00–17:20, Группы и графы, г. Сочи
|
|
|
|
|
|
Structure of $k$-closures of finite nilpotent permutation groups
Д. В. Чуриковab a Новосибирский национальный исследовательский государственный университет
b Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук, г. Новосибирск
|
|
Аннотация:
Let $\Omega$ be a finite set and $G\leqslant \operatorname{Sym}(\Omega)$. Denote by $\operatorname{Orb}_k(G)$ the set of all orbits of the induced action of $G$ on $\Omega\times\dots\times \Omega=\Omega^k$. The $k$-closure of the permutation group $G$ is defined to be the largest subgroup $G^{(k)}$ in $\operatorname{Sym}(\Omega)$ such that $\operatorname{Orb}_k(G)=\operatorname{Orb}_k(G^{(k)})$. The group $G$ is said to be $k$-closed if $G^{(k)}=G$. The concept of $k$-closure was introduced by H. Wielandt in the framework of the method of invariant relations developed by him to study group actions [1].
In this talk we focus on $k$-closures of nilpotent groups. It is well known that every finite nilpotent group is the direct product of its nontrivial Sylow subgroups. The main result shows that $k$-closure respects this decomposition generalizing results of [2,3].
Theorem. {\it If $G$ is a finite nilpotent permutation group, and $k\geqslant 2$, then $G^{(k)}$ is the direct product of $k$-closures of Sylow subgroups of $G$.}
Corollary. For $k\geqslant 2$, a finite nilpotent permutation group $G$ is $k$-closed if and only if every
Sylow subgroup of $G$ is $k$-closed.
Acknowledgement. The work is supported by the Mathematical Center in Akademgorodok under the agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation.
Список литературы
-
H. W. Wielandt, “Permutation groups through invariant relations and invariant functions”, Lecture Notes, Ohio State University, Ohio, 1969
-
D. V. Churikov, Ch. E. Praeger, “Finite totally $k$-closed groups”, Тр. ИММ УрО РАН, 27, № 1, 2021, 240–245
-
D. Churikov, I. Ponomarenko, “On $2$-closed abelian permutation groups”, arXiv: 2011.12011
|
|