|
|
Конференция международных математических центров мирового уровня
12 августа 2021 г. 17:30–18:00, Теория узлов, г. Сочи
|
|
|
|
|
|
On links in $S_g \times S^1$ and its invariants
С. Кимab a Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук, г. Новосибирск
b Новосибирский государственный университет
|
|
Аннотация:
A virtual knot, which is one of generalizations of knots in $R^3$ (or $S^3$), is, roughly speaking, an embedded circle in thickened surface $S_g \times I$. In this talk we will discuss about knots in $3$-dimensional $S_g \times S^1$. We introduce basic notions for knots in $S_g \times S^1$, for example, diagrams, moves for diagrams and so on. For knots in $S_g \times S^1$ technically we lose over/under information, but we will have information how many times the knot rotates along $S^1$. We will discuss the geometric meaning of the rotating information and how to construct invariants by using the “rotating” information.
Website:
https://talantiuspeh.webex.com/talantiuspeh-ru/j.php?MTID=m12b58ad1f14d7a9bb870e0bc3a71ff2c
|
|