|
|
Конференция международных математических центров мирового уровня
13 августа 2021 г. 15:20–16:05, Теория вычислимости и математическая логика, г. Сочи
|
|
|
|
|
|
Axiomatizability of the class of subdirectly irreducible acts over a commutative monoid
Е. Л. Ефремов, А. А. Степанова Институт математики и компьютерных наук Дальневосточного государственного университета
|
|
Аннотация:
An act ${}_SA$ is called subdirectly irreducible if
$$\bigcap\{\rho_i\mid \rho_i\neq\Delta, i\in I\}\neq\Delta$$
for every family of congruences $\rho_i$ on ${}_SA$ ($i\in I$) where $\Delta$ is zero congruence on ${}_SA$. The interest in the study of such acts is caused by Birkhoff's theorem, according to which any algebra is isomorphic to a subdirect product of subdirectly irreducible algebras [1]. The question of axiomatizability of the class of subdirectly irreducible acts over an Abelian group was studied by Stepanova A.A. and Ptakhov D.O. [2]. We describe commutative monoids, the class of subdirectly irreducible acts over which is axiomatizable.
Supported by RF Ministry of Education and Science (Suppl. Agreement No. 075-02-2021-1395 of 01.06.2021).
Список литературы
-
G. Birkhoff, “Subdirect unions in universal algebra”, Bulletin of the American Mathematical Society, 50 (1944), 764–768
-
А. А. Степанова, Д. О. Птахов, “Аксиоматизируемость класса подпрямо неразложимых полигонов над абелевой группой”, Алгебра и логика, 59:5 (2020), 582–593 ; Algebra and Logic, 59:5 (2020), 395–403
|
|