Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конференция международных математических центров мирового уровня
13 августа 2021 г. 15:20–16:05, Теория вычислимости и математическая логика, г. Сочи
 


Axiomatizability of the class of subdirectly irreducible acts over a commutative monoid

Е. Л. Ефремов, А. А. Степанова

Институт математики и компьютерных наук Дальневосточного государственного университета

Аннотация: An act ${}_SA$ is called subdirectly irreducible if
$$\bigcap\{\rho_i\mid \rho_i\neq\Delta, i\in I\}\neq\Delta$$
for every family of congruences $\rho_i$ on ${}_SA$ ($i\in I$) where $\Delta$ is zero congruence on ${}_SA$. The interest in the study of such acts is caused by Birkhoff's theorem, according to which any algebra is isomorphic to a subdirect product of subdirectly irreducible algebras [1]. The question of axiomatizability of the class of subdirectly irreducible acts over an Abelian group was studied by Stepanova A.A. and Ptakhov D.O. [2]. We describe commutative monoids, the class of subdirectly irreducible acts over which is axiomatizable.
Supported by RF Ministry of Education and Science (Suppl. Agreement No. 075-02-2021-1395 of 01.06.2021).

Список литературы
  1. G. Birkhoff, “Subdirect unions in universal algebra”, Bulletin of the American Mathematical Society, 50 (1944), 764–768
  2. А. А. Степанова, Д. О. Птахов, “Аксиоматизируемость класса подпрямо неразложимых полигонов над абелевой группой”, Алгебра и логика, 59:5 (2020), 582–593  mathnet  crossref; Algebra and Logic, 59:5 (2020), 395–403  crossref  isi  scopus
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025