|
|
Конференция международных математических центров мирового уровня
12 августа 2021 г. 12:00–12:50, Пленарные доклады, г. Сочи
|
|
|
|
|
|
Control of eigenfunctions on negatively curved surfaces
С. В. Дятлов Новосибирский национальный исследовательский государственный университет
|
|
Аннотация:
Given an $L^2$-normalized eigenfunction with eigenvalue
$\lambda^2$ on a compact Riemannian manifold $(M,g)$ and a nonempty open set
subset $\Omega$ of $M$, what lower bound can we prove on the $L^2$-mass of the
eigenfunction on $\Omega$? The unique continuation principle gives a bound
for any $\Omega$ which is exponentially small as $\lambda$ goes to infinity.
On the other hand, microlocal analysis gives a $\lambda$-independent
lower bound if $\Omega$ is large enough, i.e. it satisfies the geometric
control condition.
This talk presents a $\lambda$-independent lower bound for any set
$\Omega$ in the case when $M$ is a negatively curved surface, or more
generally a surface with Anosov geodesic flow. The proof uses microlocal
analysis, the chaotic behavior of the geodesic flow, and a new ingredient
from harmonic analysis called the Fractal Uncertainty Principle.
Applications include control for Schrodinger equation and exponential
decay of damped waves. Joint work with Jean Bourgain, Long Jin, and
Stéphane Nonnenmacher.
Website:
https://talantiuspeh.webex.com/talantiuspeh-ru/j.php?MTID=m55570f44dd449faf2b424bad81fd836c
|
|