Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конференция международных математических центров мирового уровня
10 августа 2021 г. 12:00–12:50, Пленарные доклады, г. Сочи
 


Zero sets of Laplace eigenfunctions

А. А. Логунов

Princeton University

Аннотация: In the beginning of 19th century Napoleon set a prize for the best mathematical explanation of Chladni’s resonance experiments. Nodal geometry studies the zeroes of solutions to elliptic differential equations such as the visible curves that appear in these physical experiments. We will discuss geometrical and analytic properties of zero sets of harmonic functions and eigenfunctions of the Laplace operator. For harmonic functions on the plane there is an interesting relation between local length of the zero set and the growth of harmonic functions. The larger the zero set is, the faster the growth of harmonic function should be and vice versa. Zero sets of Laplace eigenfunctions on surfaces are unions of smooth curves with equiangular intersections. Topology of the zero set could be quite complicated, but Yau conjectured that the total length of the zero set is comparable to the square root of the eigenvalue for all eigenfunctions. We will start with open questions about spherical harmonics and explain some methods to study nodal sets

Website: https://talantiuspeh.webex.com/talantiuspeh-ru/j.php?MTID=m55570f44dd449faf2b424bad81fd836c
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025