Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция "Adian 90: Conference on Mathematical Logic, Algebra and Computation"
8 июля 2021 г. 11:30–12:15, Математический институт им.В.А.Стеклова РАН (г. Москва) и online-трансляция через Zoom
 


Large scale geometries of infinite strings

B. Khoussainovab

a The UESTC, Chengdu, China
b The University of Auckland, New Zealand
Видеозаписи:
MP4 268.1 Mb

Количество просмотров:
Эта страница:166
Видеофайлы:18



Аннотация: We aim to shed light on our understanding of large-scale properties of infinite strings. Say that an infinite string X has weaker large-scale geometry than that of Y if there is color preserving bi-Lipschitz map from X to Y with small distortion. This defines a partially ordered set of large-scale geometries on infinite strings. This partial order presents an algebraic tool for classification of global patterns. We prove that this partial order has a greatest element and has infinite chains and anti-chains. We study the sets of large-scale geometries of strings accepted by finite state machines. We provide an algorithm that describes large scale geometries of strings accepted by $\omega$- automata. This connects the work with the complexity theory. We prove that the quasi-isometry problem is $\Sigma_2^0$-complete, thus providing a bridge with computability theory. We build algebraic structures that are invariants of large-scale geometries. We invoke asymptotic cones, a key concept in geometric group theory, defined via model-theoretic notion of ultra-product. We study asymptotic cones of algorithmically random strings, thus connecting the topic with algorithmic randomness.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024