Loading [MathJax]/jax/output/SVG/config.js
Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция "Adian 90: Conference on Mathematical Logic, Algebra and Computation"
7 июля 2021 г. 16:15–17:00, Математический институт им.В.А.Стеклова РАН (г. Москва) и online-трансляция через Zoom
 


First order rigidity of high-rank arithmetic groups

A. Lubotzky

Hebrew University, Israel
Видеозаписи:
MP4 240.5 Mb



Аннотация: The family of high rank arithmetic groups is a class of groups playing an important role in various areas of mathematics. It includes $\mathrm{SL}(n,\mathbb{Z})$, for $n>2$ , $\mathrm{SL}(n, \mathbb{Z}[1/p])$ for $n>1$, their finite index subgroups and many more. A number of remarkable results about them have been proven including; Weil local rigidity, Mostow strong rigidity, Margulis Super rigidity and the Schwartz-Eskin-Farb Quasi-isometric rigidity.
We will add a new type of rigidity : "first order rigidity". Namely if $D$ is such a non-uniform characteristic zero arithmetic group and L a finitely generated group which is elementary equivalent to $D$ then $L$ is isomorphic to $D$.
This stands in contrast with Zlil Sela's remarkable work which implies that the free groups, surface groups and hyperbolic groups (many of which are low-rank arithmetic groups) have many non isomorphic finitely generated groups which are elementary equivalent to them.
Based on a joint paper with Nir Avni and Chen Meiri (Invent. Math. 217(2019) 219-240).

Язык доклада: английский
 
  Обратная связь:
math-net2024_12@mi-ras.ru
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024