Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Заседания Санкт-Петербургского математического общества
21 апреля 2009 г. 18:00, г. Санкт-Петербург
 


Теоремы типа Шевалле для групп комплексных отражений

О. В. Шварцман
Видеозаписи:
Real Video 236.0 Mb
Windows Media 251.3 Mb
Flash Video 1,065.9 Mb
MP4 681.9 Mb

Количество просмотров:
Эта страница:1104
Видеофайлы:481

О. В. Шварцман



Аннотация: Пусть $\Gamma$ — конечная линейная группа в $\mathbb C^n$. Назовем ее хорошей, если алгебра $A$ полиномов, инвариантных относительно группы $\Gamma$, свободна. Классическая теорема Шевалле утверждает, что хорошие конечные линейные группы — это в точности группы, порожденные комплексными отражениями. Пусть теперь $\Gamma$ — дискретная группа преобразований эрмитова симметрического пространства $X$. Мы предположим, что факторпространство $X/\Gamma$ компактно. Естественной заменой алгебры инвариантных полиномов служит алгебра $\Gamma$-$a$-автоморфных форм на пространстве $X$. Группа $\Gamma$ называется хорошей, если существует такой фактор автоморфности $a$, что алгебра автоморфных форм $A(\Gamma,a)$ есть свободная алгебра размерности $(\dim X+1)$. В докладе мы сосредоточимся на случае, когда $X$ — это единичный диск $B=\{z\in \mathbb C\mid|z|<1\}$. Для этого случая были описаны все такие пары $(\Gamma,a)$, что $A(\Gamma,a)$ есть свободная алгебра с двумя образующими.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024