|
|
Семинар отдела алгебры и отдела алгебраической геометрии (семинар И. Р. Шафаревича)
15 июня 2021 г. 15:00, г. Москва, МИАН, комн. 104 (ул. Губкина, 8) + Zoom
|
|
|
|
|
|
Compact moduli of K3 surfaces
V. A. Alexeev |
Количество просмотров: |
Эта страница: | 322 |
|
Аннотация:
Let $F$ be a moduli space of
lattice-polarized K3 surfaces. Suppose that one has chosen a
canonical effective ample divisor $R$ on a general K3 in $F$. We call
this divisor "recognizable" if its flat limit on Kulikov surfaces is
well defined. We prove that the normalization of the stable pair
compactification $F_R$ for a recognizable divisor is a Looijenga
semitoroidal compactification. For polarized K3 surfaces $(X,L)$ of
degree $2d$, we show that the sum of rational curves in the linear
system $|L|$ is a recognizable divisor, giving a modular semitoroidal
compactification of $F_{2d}$ for all $d$.
This is a joint work with Philip Engel.
Язык доклада: английский
|
|