Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Геометрическая теория оптимального управления
2 июня 2021 г. 16:45–18:15, г. Москва, https://join.skype.com/LMie1oQmGQy0
 


Теория выживаемости для управляемых систем в пространстве вероятностных мер

Ю. В. Авербухab

a Институт математики и механики УрО АН СССР
b Национальный исследовательский университет "Высшая школа экономики", г. Москва
Видеозаписи:
MP4 490.7 Mb

Количество просмотров:
Эта страница:1495
Видеофайлы:68



Аннотация: Теория выживаемости исследует свойство динамической системы оставаться в заданном множестве. Это понятие является ключевым при построении теории минимаксных/вязкостных решений уравнений типа Гамильтона-Якоби. Основным результатом теории выживаемости являются характеризации условия выживаемости в терминах конуса касательных направлений и в терминах нормального конуса. В докладе рассматриваются теоремы о выживаемости для управляемых систем в пространстве вероятностных мер, снабженном метрикой Канторовича (Васерштейна). Пространство вероятностных мер является лишь метрическим, но в то же время наследует многие свойства от исходного пространства. В докладе мы следуем подходу, предложенному N. Gigli, рассматривающему в качестве касательного (кокасательного) расслоения пространства вероятностных мер множество распределений над косательным (кокасательным) расслоением исходного пространства. Определяя подходящим образом конус касательных направлений и нормальный конус как распределения над касательным и кокасательным расслоениями фазового пространства соответственно, мы получаем теоремы о выживаемости для управляемых систем в пространстве вероятностных мер, аналогичные классическим теоремам для конечномерных систем.

Website: https://kafedra-opu.ru/node/629
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024