Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Complex Approximations, Orthogonal Polynomials and Applications Workshop
11 июня 2021 г. 09:30–10:10, г. Сочи
 


Poncelet–Darboux, Kippenhahn, and Szegő: projective geometry, matrices and orthogonal polynomials

A. Martínez-Finkelshteinab

a Baylor University
b Universidad de Almería

Аннотация: We study algebraic curves that are envelopes of families of polygons supported on the unit circle $\mathbb{T}$. We address, in particular, a characterization of such curves of minimal class and show that all realizations of these curves are essentially equivalent and can be described in terms of orthogonal polynomials on the unit circle (OPUC), also known as Szegő polynomials. These results have connections to classical results from algebraic and projective geometry, such as theorems of Poncelet, Darboux, and Kippenhahn; numerical ranges of a class of matrices; and Blaschke products and disk functions.
This is a joint work with Markus Hunziker, Taylor Poe, and Brian Simanek, all at Baylor University.

Язык доклада: английский

Website: https://us02web.zoom.us/j/8618528524?pwd=MmxGeHRWZHZnS0NLQi9jTTFTTzFrQT09

* Zoom conference ID: 861 852 8524 , password: caopa
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024