Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Complex Approximations, Orthogonal Polynomials and Applications Workshop
8 июня 2021 г. 17:30–17:55, г. Сочи
 


On the best uniform polynomial approximation to the checkmark function

P. Dragnev

Purdue University

Количество просмотров:
Эта страница:85

Аннотация: In this talk we shall consider the best uniform polynomial approximation of the checkmark function $f(x)=|x-\alpha |$ as $\alpha$ varies in $(-1,1)$. For each fixed degree $n$, the minimax error $E_n (\alpha)$ is shown to be piecewise analytic in $\alpha$ and the best approximants stem from classical polynomials of Chebyshev, Zolotarev, Krein, etc. In addition, $E_n(\alpha)$ is shown to feature $n-1$ piecewise linear decreasing/increasing sections, called V-shapes. The points of the alternation set are proven to be monotone increasing in $\alpha$ and their dynamics are completely characterized. We also prove a conjecture of Shekhtman that for odd $n$, $E_n(\alpha)$ has a local maximum at $\alpha=0$.
This is a joint work with Alan Legg (PUFW) and Ramon Orive (ULL), arXiv:2102.09502.

Язык доклада: английский

Website: https://us02web.zoom.us/j/8618528524?pwd=MmxGeHRWZHZnS0NLQi9jTTFTTzFrQT09

* Zoom conference ID: 861 852 8524 , password: caopa
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025