Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Complex Approximations, Orthogonal Polynomials and Applications Workshop
8 июня 2021 г. 15:30–15:55, г. Сочи
 


Riesz energy problems in unbounded sets of $\mathbb{R}^{d}$

F. Wielonsky

Aix-Marseille Université

Аннотация: We investigate Riesz energy problems on unbounded conductors in $\mathbb{R}^d$ in the presence of general external fields $Q$. We provide new sufficient conditions on $Q$ for the existence of an equilibrium measure and the compactness of its support. Particular attention is paid to the case of the hyperplanar conductor $\mathbb{R}^{d}$, embedded in $\mathbb{R}^{d+1}$, when the external field is created by the potential of a simple discrete measure $\nu$ outside of $\mathbb{R}^{d}$. An extension of a classical theorem by de La Vallée-Poussin is established which may be of independent interest.
This is a joint work with P. Dragnev, R. Orive, and E. B. Saff.

Язык доклада: английский

Website: https://us02web.zoom.us/j/8618528524?pwd=MmxGeHRWZHZnS0NLQi9jTTFTTzFrQT09

* Zoom conference ID: 861 852 8524 , password: caopa
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024