Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Complex Approximations, Orthogonal Polynomials and Applications Workshop
7 июня 2021 г. 14:30–14:55, г. Сочи
 


Solving the signed equilibrium problem on several real intervals

B. Beckermann, A. C. Matos

Université de Lille

Аннотация: Given the union $I$ of real disjoint intervals and a smooth external field $Q$ on $I$, the signed equilibrium problem consist of finding a signed measure $\mu$ of mass $1$ supported on $I$ such that $U^\mu+Q$ is equal to a constant on $I$. Taking derivatives, we may reformulate this problem as an integral equation with a Cauchy kernel, and can solve the problem via a block polynomial spectral method via Chebyshev polynomials. However, small gaps between consecutive subintervals deteriorate the rate of convergence. Instead, we suggest a new spectral method based on Chebyshev rational orthogonal functions, leading to much smaller systems of linear equations. We present several numerical examples, and combine this technique with the iterated balayage algorithm of Dragnev, in order to solve also positive equilibrium problems.

Язык доклада: английский

Website: https://us02web.zoom.us/j/8618528524?pwd=MmxGeHRWZHZnS0NLQi9jTTFTTzFrQT09

* Zoom conference ID: 861 852 8524 , password: caopa
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024